Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 739
Filtrar
1.
Int J Mol Sci ; 25(7)2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38612818

RESUMO

Many genomic, anatomical and functional differences exist between the medullary (MTAL) and the cortical thick ascending limb of the loop of Henle (CTAL), including a higher expression of claudin-10 (CLDN10) in the MTAL than in the CTAL. Therefore, we assessed to what extent the Cldn10 gene expression is a determinant of differential gene expression between MTAL and CTAL. RNAs extracted from CTAL and MTAL microdissected from wild type (WT) and Cldn10 knock out mice (cKO) were analyzed by RNAseq. Differential and enrichment analyses (GSEA) were performed with interactive R Shiny software. Between WT and cKO MTAL, 637 genes were differentially expressed, whereas only 76 were differentially expressed between WT and cKO CTAL. Gene expression patterns and GSEA analyses in all replicates showed that WT MTAL did not cluster with the other replicates; no hierarchical clustering could be found between WT CTAL, cKO CTAL and cKO MTAL. Compared to WT replicates, cKO replicates were enriched in Cldn16, Cldn19, Pth1r, (parathyroid hormone receptor type 1), Casr (calcium sensing receptor) and Vdr (Vitamin D Receptor) mRNA in both the cortex and medulla. Cldn10 is associated with gene expression patterns, including genes specifically involved in divalent cations reabsorption in the TAL.


Assuntos
Medula Suprarrenal , Extremidades , Animais , Camundongos , Claudinas/genética , Camundongos Knockout , Expressão Gênica
2.
Cell Death Dis ; 15(4): 284, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38654000

RESUMO

Intestinal stem cells (ISCs) play a crucial role in the continuous self-renewal and recovery of the intestinal epithelium. In previous studies, we have revealed that the specific absence of Claudin-7 (Cldn-7) in intestinal epithelial cells (IECs) can lead to the development of spontaneous colitis. However, the mechanisms by which Cldn-7 maintains homeostasis in the colonic epithelium remain unclear. Therefore, in the present study, we used IEC- and ISC-specific Cldn-7 knockout mice to investigate the regulatory effects of Cldn-7 on colonic Lgr5+ stem cells in the mediation of colonic epithelial injury and repair under physiological and inflammatory conditions. Notably, our findings reveal that Cldn-7 deletion disrupts the self-renewal and differentiation of colonic stem cells alongside the formation of colonic organoids in vitro. Additionally, these Cldn-7 knockout models exhibited heightened susceptibility to experimental colitis, limited epithelial repair and regeneration, and increased differentiation toward the secretory lineage. Mechanistically, we also established that Cldn-7 facilitates the proliferation, differentiation, and organoid formation of Lgr5+ stem cells through the maintenance of Wnt and Notch signalling pathways in the colonic epithelium. Overall, our study provides new insights into the maintenance of ISC function and colonic epithelial homoeostasis.


Assuntos
Claudinas , Colo , Homeostase , Camundongos Knockout , Receptores Notch , Células-Tronco , Via de Sinalização Wnt , Animais , Células-Tronco/metabolismo , Células-Tronco/citologia , Receptores Notch/metabolismo , Claudinas/metabolismo , Claudinas/genética , Camundongos , Colo/metabolismo , Diferenciação Celular , Colite/metabolismo , Colite/patologia , Colite/induzido quimicamente , Mucosa Intestinal/metabolismo , Organoides/metabolismo , Camundongos Endogâmicos C57BL , Proliferação de Células , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/genética
3.
Biomolecules ; 14(3)2024 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-38540693

RESUMO

Claudins (CLDN1-CLDN24) are a family of tight junction proteins whose dysregulation has been implicated in tumorigeneses of many cancer types. In colorectal cancer (CRC), CLDN1, CLDN2, CLDN4, and CLDN18 have been shown to either be upregulated or aberrantly expressed. In the normal colon, CLDN1 and CLDN3-7 are expressed. Although a few claudins, such as CLDN6 and CLDN7, are expressed in CRC their levels are reduced compared to the normal colon. The present review outlines the expression profiles of claudin proteins in CRC and those that are potential biomarkers for prognostication.


Assuntos
Claudinas , Neoplasias Colorretais , Humanos , Claudina-1/genética , Claudinas/genética , Proteínas de Junções Íntimas , Neoplasias Colorretais/genética
4.
J Biochem Mol Toxicol ; 38(3): e23682, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38462752

RESUMO

Claudin-6 (CLDN6) has been extensively studied in different tumors to date. However, in the case of nonsmall cell lung cancer (NSCLC), CLDN6 has a largely unknown role and molecular mechanism. We detected the expression of CLDN6 in NSCLC tissues and cells using reverse transcription-quantitative polymerase chain reaction (PCR) and western blot assays. A gain-of-function experiment was performed to evaluate the biological effects of CLDN6 on NSCLC cell behaviors. Methylation-specific PCR was utilized to detect the DNA methylation of CLDN6 gene promoter region. The interaction of CLDN6 and receptor interacting protein 1 (RIP1) was determined by coimmunoprecipitation assay. Furthermore, the modulation of CLDN6 on RIP1/apoptosis signal-regulating kinase 1 (ASK1)/c-Jun N-terminal kinase (JNK) axis was confirmed. The results showed that in NSCLC tissues and cells, CLDN6 expression level was declined, and was associated with a high level of DNA methylation. CLDN6 overexpression suppressed the viability, invasion, migration, and promoted cell apoptosis. Besides, the enhanced expression of CLDN6 reduced the glycolysis and the dysfunction of mitochondrial respiration of NSCLC cells. Mechanistic investigation confirmed that CLDN6 interacted with RIP1 and inhibited cellular biological function of NSCLC cells via RIP1/ASK1/JNK axis. Besides, CLDN6 overexpression inhibited tumor growth in vivo. In conclusion, CLDN6 inhibited NSCLC cell proliferation through inactivating aerobic glycolysis via the RIP1/ASK1/JNK axis.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Neoplasias Pulmonares/metabolismo , MAP Quinase Quinase Quinase 5/farmacologia , Claudinas/genética , Claudinas/metabolismo , Linhagem Celular Tumoral , Apoptose , Proliferação de Células
5.
PLoS One ; 19(2): e0299114, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38408048

RESUMO

Analyzed endometrial cancer (EC) genomes have allowed for the identification of molecular signatures, which enable the classification, and sometimes prognostication, of these cancers. Artificial intelligence algorithms have facilitated the partitioning of mutations into driver and passenger based on a variety of parameters, including gene function and frequency of mutation. Here, we undertook an evaluation of EC cancer genomes deposited on the Catalogue of Somatic Mutations in Cancers (COSMIC), with the goal to classify all mutations as either driver or passenger. Our analysis showed that approximately 2.5% of all mutations are driver and cause cellular transformation and immortalization. We also characterized nucleotide level mutation signatures, gross chromosomal re-arrangements, and gene expression profiles. We observed that endometrial cancers show distinct nucleotide substitution and chromosomal re-arrangement signatures compared to other cancers. We also identified high expression levels of the CLDN18 claudin gene, which is involved in growth, survival, metastasis and proliferation. We then used in silico protein structure analysis to examine the effect of certain previously uncharacterized driver mutations on protein structure. We found that certain mutations in CTNNB1 and TP53 increase protein stability, which may contribute to cellular transformation. While our analysis retrieved previously classified mutations and genomic alterations, which is to be expected, this study also identified new signatures. Additionally, we show that artificial intelligence algorithms can be effectively leveraged to accurately predict key drivers of cancer. This analysis will expand our understanding of ECs and improve the molecular toolbox for classification, diagnosis, or potential treatment of these cancers.


Assuntos
Neoplasias do Endométrio , Neoplasias , Feminino , Humanos , Inteligência Artificial , Neoplasias do Endométrio/genética , Neoplasias do Endométrio/patologia , Neoplasias/patologia , Genômica , Algoritmos , Mutação , Nucleotídeos , Claudinas/genética
6.
Int J Mol Sci ; 25(3)2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38339056

RESUMO

Patients with mutations in Cldn16 suffer from familial hypomagnesaemia with hypercalciuria and nephrocalcinosis (FHHNC) which can lead to renal insufficiency. Mice lacking claudin-16 show hypomagnesemia and hypercalciuria, but no nephrocalcinosis. Calcium oxalate and calcium phosphate are the most common insoluble calcium salts that accumulate in the kidney in the case of nephrocalcinosis, however, the formation of these salts is less favored in acidic conditions. Therefore, urine acidification has been suggested to limit the formation of calcium deposits in the kidney. Assuming that urine acidification is causative for the absence of nephrocalcinosis in the claudin-16-deficient mouse model, we aimed to alkalinize the urine of these mice by the ablation of the subunit B1 of the vesicular ATPase in addition to claudin-16. In spite of an increased urinary pH in mice lacking claudin-16 and the B1 subunit, nephrocalcinosis did not develop. Thus, urinary acidification is not the only factor preventing nephrocalcinosis in claudin-16 deficient mice.


Assuntos
Hipercalciúria , Nefrocalcinose , Humanos , Animais , Camundongos , Hipercalciúria/genética , Nefrocalcinose/genética , Cálcio , Sais , Magnésio , Concentração de Íons de Hidrogênio , Claudinas/genética
7.
Cell Biochem Funct ; 42(2): e3958, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38396357

RESUMO

Iron accumulation in the brain causes oxidative stress, blood-brain barrier (BBB) breakdown, and neurodegeneration. We examined the preventive effects of acetylated oligopeptides (AOP) from whey protein on iron-induced hippocampal damage compared to N-acetyl cysteine (NAC). This 5-week study used 40 male albino rats. At the start, all rats received 150 mg/kg/day of oral NAC for a week. The 40 animals were then randomly divided into four groups: Group I (control) received a normal diet; Group II (iron overload) received 60 mg/kg/day intraperitoneal iron dextran 5 days a week for 4 weeks; Group III (NAC group) received 150 mg/kg/day NAC and iron dextran; and Group IV (AOP group) received 150 mg/kg/day AOP and iron dextran. Enzyme-linked immunosorbent assay, spectrophotometry, and qRT-PCR were used to measure MMP-9, tissue inhibitor metalloproteinase-1 (TIMP-1), MDA, reduced glutathione (GSH) levels, and nuclear factor erythroid 2-related factor 2 (Nrf2) and heme oxygenase-1 (HO-1) gene expression. Histopathological and immunohistochemical detection of nestin, claudin, caspase, and GFAP was also done. MMP-9, TIMP-1, MDA, caspase, and GFAP rose in the iron overload group, while GSH, Nrf2, HO-1, nestin, and claudin decreased. The NAC and AOP administrations improved iron overload-induced biochemical and histological alterations. We found that AOP and NAC can protect the brain hippocampus from iron overload, improve BBB disruption, and provide neuroprotection with mostly no significant difference from healthy controls.


Assuntos
Acetilcisteína , Sobrecarga de Ferro , Oligopeptídeos , Animais , Masculino , Ratos , Acetilcisteína/farmacologia , Acetilcisteína/metabolismo , Caspases/metabolismo , Claudinas/genética , Giro Denteado/metabolismo , Giro Denteado/patologia , Dextranos/metabolismo , Dextranos/farmacologia , Regulação para Baixo , Glutationa/metabolismo , Hipocampo/metabolismo , Hipocampo/patologia , Ferro/metabolismo , Ferro/farmacologia , Sobrecarga de Ferro/complicações , Sobrecarga de Ferro/tratamento farmacológico , Metaloproteinase 9 da Matriz/genética , Metaloproteinase 9 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/farmacologia , Nestina/genética , Nestina/metabolismo , Nestina/farmacologia , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo , Inibidor Tecidual de Metaloproteinase-1/genética , Inibidor Tecidual de Metaloproteinase-1/metabolismo , Inibidor Tecidual de Metaloproteinase-1/farmacologia , Regulação para Cima , Oligopeptídeos/farmacologia , Heme Oxigenase-1/efeitos dos fármacos , Proteína Glial Fibrilar Ácida/efeitos dos fármacos , Proteína Glial Fibrilar Ácida/metabolismo
8.
EMBO Rep ; 25(1): 144-167, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38177906

RESUMO

The tight junction (TJ) in epithelial cells is formed by integral membrane proteins and cytoplasmic scaffolding proteins. The former contains the claudin family proteins with four transmembrane segments, while the latter includes Par3, a PDZ domain-containing adaptor that organizes TJ formation. Here we show the single membrane-spanning protein TMEM25 localizes to TJs in epithelial cells and binds to Par3 via a PDZ-mediated interaction with its C-terminal cytoplasmic tail. TJ development during epithelial cell polarization is accelerated by depletion of TMEM25, and delayed by overexpression of TMEM25 but not by that of a C-terminally deleted protein, indicating a regulatory role of TMEM25. TMEM25 associates via its N-terminal extracellular domain with claudin-1 and claudin-2 to suppress their cis- and trans-oligomerizations, both of which participate in TJ strand formation. Furthermore, Par3 attenuates TMEM25-claudin association via binding to TMEM25, implying its ability to affect claudin oligomerization. Thus, the TJ protein TMEM25 appears to negatively regulate claudin assembly in TJ formation, which regulation is modulated by its interaction with Par3.


Assuntos
Claudinas , Junções Íntimas , Junções Íntimas/metabolismo , Claudinas/genética , Claudinas/metabolismo , Proteínas de Transporte/metabolismo , Células Epiteliais , Claudina-1/genética , Claudina-1/metabolismo
9.
Life Sci Alliance ; 7(3)2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38171596

RESUMO

The mouse cortical collecting duct cell line presents a tight epithelium with regulated ion and water transport. The epithelial sodium channel (ENaC) is localized in the apical membrane and constitutes the rate-limiting step for sodium entry, thereby enabling transepithelial transport of sodium ions. The membrane-bound serine protease Tmprss2 is co-expressed with the alpha subunit of ENaC. αENaC gene expression followed the Tmprss2 expression, and the absence of Tmprss2 resulted not only in down-regulation of αENaC gene and protein expression but also in abolished transepithelial sodium transport. In addition, RNA-sequencing analyses unveiled drastic down-regulation of the membrane-bound protease CAP3/St14, the epithelial adhesion molecule EpCAM, and the tight junction proteins claudin-7 and claudin-3 as also confirmed by immunohistochemistry. In summary, our data clearly demonstrate a dual role of Tmprss2 in maintaining not only ENaC-mediated transepithelial but also EpCAM/claudin-7-mediated paracellular barrier; the tight epithelium of the mouse renal mCCD cells becomes leaky. Our working model proposes that Tmprss2 acts via CAP3/St14 on EpCAM/claudin-7 tight junction complexes and through regulating transcription of αENaC on ENaC-mediated sodium transport.


Assuntos
Claudinas , Sódio , Animais , Camundongos , Transporte Biológico/fisiologia , Claudinas/genética , Claudinas/metabolismo , Molécula de Adesão da Célula Epitelial/metabolismo , Transporte de Íons , Sódio/metabolismo
10.
Int J Biol Sci ; 20(1): 1-14, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38164185

RESUMO

To find new molecular targets for triple negative breast cancer (TNBC), we analyzed a large-scale drug screening dataset based on breast cancer subtypes. We discovered that BDP-9066, a specific MRCK inhibitor (MRCKi), may be an effective drug against TNBC. After confirming the efficacy and specificity of BDP-9066 against TNBC in vitro and in vivo, we further analyzed the underlying mechanism of specific activity of BDP-9066 against TNBC. Comparing the transcriptome of BDP-9066-sensitive and -resistant cells, the activation of the focal adhesion and YAP/TAZ pathway were found to play an important role in the sensitive cells. Furthermore, YAP/TAZ is indeed repressed by BDP-9066 in the sensitive cells, and active form of YAP suppresses the effects of BDP-9066. YAP/TAZ expression and activity are high in TNBC, especially the Claudin-low subtype, consistent with the expression of focal adhesion-related genes. Interestingly, NF-κB functions downstream of YAP/TAZ in TNBC cells and is suppressed by BDP-9066. Furthermore, the PI3 kinase pathway adversely affected the effects of BDP-9066 and that alpelisib, a PI3 kinase inhibitor, synergistically increased the effects of BDP-9066, in PIK3CA mutant TNBC cells. Taken together, we have shown for the first time that MRCKi can be new drugs against TNBC, particularly the Claudin-low subtype.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Neoplasias de Mama Triplo Negativas , Humanos , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/metabolismo , Proteínas de Sinalização YAP , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Claudinas/genética , Claudinas/metabolismo , Linhagem Celular Tumoral
11.
Calcif Tissue Int ; 114(2): 110-118, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38078932

RESUMO

Familial hypomagnesemia with hypercalciuria and nephrocalcinosis (FHNNC) is a rare autosomal recessive renal tubulopathy disorder characterized by excessive urinary loss of calcium and magnesium, polyuria, polydipsia, bilateral nephrocalcinosis, progressive chronic kidney disease, and renal failure. Also, sometimes amelogenesis imperfecta and severe ocular abnormalities are involved. The CLDN-16 and CLDN-19 genes encode the tight junction proteins claudin-16 and claudin-19, respectively, in the thick ascending loop of Henle in the kidney, epithelial cells of the retina, dental enamel, etc. Loss of function of the CLDN-16 and/or CLDN-19 genes leads to FHHNC. We present a case of FHHNC type 1, which was first confused with autosomal dominant hypocalcaemia (ADH) due to the presence of a very low serum parathyroid hormone (PTH) concentration and other similar clinical features before the genetic investigations. After the exome sequencing, FHHNC type 1 was confirmed by uncovering a novel homozygous missense mutation in the CLDN-16 gene (Exon 2, c.374 T > C) which causes, altered protein structure with F55S. Associated clinical, biochemical, and imaging findings also corroborate final diagnosis. Our findings expand the spectrum of the CLDN-16 mutation, which will further help in the genetic diagnosis and management of FHNNC.


Assuntos
Hipocalcemia , Hipoparatireoidismo/congênito , Nefrocalcinose , Humanos , Magnésio , Mutação de Sentido Incorreto , Nefrocalcinose/complicações , Nefrocalcinose/diagnóstico , Nefrocalcinose/genética , Hipercalciúria/complicações , Hipercalciúria/diagnóstico , Hipercalciúria/genética , Hipocalcemia/complicações , Hipocalcemia/diagnóstico , Hipocalcemia/genética , Mutação , Claudinas/genética
12.
Oncol Rep ; 51(2)2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38131227

RESUMO

Ras­related protein 25 (Rab25) is a member of small GTPase and is implicated in cancer cell progression of various types of cancer. Growing evidence suggests the context­dependent role of Rab25 in cancer invasiveness. Claudin­7 is a tight junction protein and has been known to suppress cancer cell invasion. Although Rab25 was reported to repress cancer aggressiveness through recycling ß1 integrin to the plasma membrane, the detailed underlying mechanism remains to be elucidated. The present study identified the critical role of claudin­7 in Rab25­induced suppression of colon cancer invasion. 3D Matrigel system and modified Boyden chamber analysis showed that enforced expression of Rab25 attenuated colon cancer cell invasion. In addition, Rab25 inactivated epidermal growth factor receptor (EGFR) and increased E­cadherin expression. Unexpectedly, it was observed that Rab25 induces claudin­7 expression through protein stabilization. In addition, ectopic claudin­7 expression reduced EGFR activity and Snail expression as well as colon cancer cell invasion. However, silencing of claudin­7 expression reversed the tumor suppressive role of Rab25, thereby increasing colon cancer cell invasiveness. Collectively, the present data indicated that Rab25 inactivates EGFR and colon cancer cell invasion by upregulating claudin­7 expression.


Assuntos
Neoplasias do Colo , Receptores ErbB , Humanos , Receptores ErbB/genética , Receptores ErbB/metabolismo , Neoplasias do Colo/genética , Invasividade Neoplásica/genética , Invasividade Neoplásica/patologia , Claudinas/genética , Proteínas rab de Ligação ao GTP/genética , Proteínas rab de Ligação ao GTP/metabolismo , Linhagem Celular Tumoral
13.
Dev Biol ; 507: 20-33, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38154769

RESUMO

The neural tube, the embryonic precursor to the brain and spinal cord, begins as a flat sheet of epithelial cells, divided into non-neural and neural ectoderm. Proper neural tube closure requires that the edges of the neural ectoderm, the neural folds, to elevate upwards and fuse along the dorsal midline of the embryo. We have previously shown that members of the claudin protein family are required for the early phases of chick neural tube closure. Claudins are transmembrane proteins, localized in apical tight junctions within epithelial cells where they are essential for regulation of paracellular permeability, strongly involved in apical-basal polarity, cell-cell adhesion, and bridging the tight junction to cytoplasmic proteins. Here we explored the role of Claudin-3 (Cldn3), which is specifically expressed in the non-neural ectoderm. We discovered that depletion of Cldn3 causes folic acid-insensitive primarily spinal neural tube defects due to a failure in neural fold fusion. Apical cell surface morphology of Cldn3-depleted non-neural ectodermal cells exhibited increased membrane blebbing and smaller apical surfaces. Although apical-basal polarity was retained, we observed altered Par3 and Pals1 protein localization patterns within the apical domain of the non-neural ectodermal cells in Cldn3-depleted embryos. Furthermore, F-actin signal was reduced at apical junctions. Our data presents a model of spina bifida, and the role that Cldn3 is playing in regulating essential apical cell processes in the non-neural ectoderm required for neural fold fusion.


Assuntos
Ectoderma , Crista Neural , Embrião de Galinha , Animais , Ectoderma/metabolismo , Crista Neural/metabolismo , Galinhas/metabolismo , Claudina-3/metabolismo , Tubo Neural , Claudinas/genética , Claudinas/metabolismo , Junções Íntimas/metabolismo
14.
FASEB J ; 38(1): e23358, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38050671

RESUMO

MicroRNA (miRNA)-mediated mRNA regulation directs many homeostatic and pathological processes, but how miRNAs coordinate aberrant esophageal inflammation during eosinophilic esophagitis (EoE) is poorly understood. Here, we report a deregulatory axis where microRNA-155 (miR-155) regulates epithelial barrier dysfunction by selectively constraining tight junction CLDN7 (claudin-7). MiR-155 is elevated in the esophageal epithelium of biopsies from patients with active EoE and in cell culture models. MiR-155 localization using in situ hybridization (ISH) in patient biopsies and intra-epithelial compartmentalization of miR-155 show expression predominantly within the basal epithelia. Epithelial miR-155 activity was evident through diminished target gene expression in 3D organotypic cultures, particularly in relatively undifferentiated basal cell states. Mechanistically, generation of a novel cell line with enhanced epithelial miR-155 stable overexpression induced a functionally deficient epithelial barrier in 3D air-liquid interface epithelial cultures measured by transepithelial electrical resistance (TEER). Histological assessment of 3D esophageal organoid cultures overexpressing miR-155 showed notable dilated intra-epithelial spaces. Unbiased RNA-sequencing analysis and immunofluorescence determined a defect in epithelial barrier tight junctions and revealed a selective reduction in the expression of critical esophageal tight junction molecule, claudin-7. Together, our data reveal a previously unappreciated role for miR-155 in mediating epithelial barrier dysfunction in esophageal inflammation.


Assuntos
Claudinas , Esofagite Eosinofílica , MicroRNAs , Humanos , Claudinas/genética , Esofagite Eosinofílica/genética , Esofagite Eosinofílica/metabolismo , Esofagite Eosinofílica/patologia , Células Epiteliais/metabolismo , Hipóxia/metabolismo , Inflamação/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Junções Íntimas/metabolismo
15.
Neuro Endocrinol Lett ; 44(8): 537-546, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38131177

RESUMO

BACKGROUND: Deeper studies on the pathological mechanism associated with invasiveness of non-functioning pituitary adenoma (NFPA) is imperative to find better treatments. This research was preliminarily conducted to investigate the correlation between the expression of Claudin-9 (CLDN9), Tyrosine kinase-2 (TYK2), Signal transducers and activators of transcription-3 (STAT3) and invasiveness in NFPA to illustrate the pathological mechanism. METHODS: Clinical data and surgical specimens of 12 patients with NFPA were collected and divided into invasive and non-invasive NFPA groups, comprising six patients for each group. CLDN9, TYK2 and STAT3 transcription and expression levels in the NFPA tissues of the two groups were detected by quantitative real-time polymerase chain reaction (qRT-PCR), Western blotting (WB) and immunohistochemistry (IHC). The lentiviral plasmid transfection technique was used to develop a rat pituitary tumour GT1-1 cell line null control group (NC) and CLDN9-overexpressed experimental group (OE-CLDN9), and TYK2 and STAT3 transcription levels in the NC and OE-CLDN9 cell groups were detected using qRT-PCR. RESULTS: The CLDN9 and STAT3 expressions were significantly higher in invasive than in non-invasive NFPA tissues, whereas the TYK2 expression in invasive NFPA tissues was significantly lower than that in non-invasive NFPA (p < 0.001); The STAT3 upregulated (p < 0.001) and the TYK2 downregulated (p < 0.01) after the CLDN9 overexpression. CONCLUSION: Upregulated CLDN9 may increase the NFPA invasiveness through STAT3. In addition, low TYK2 expression might enhance the invasiveness in NFPA, which needs further studies to confirm. These results could provide a promising research leads for targeted treatment of NFPA.


Assuntos
Neoplasias Hipofisárias , Humanos , Neoplasias Hipofisárias/patologia , TYK2 Quinase/genética , TYK2 Quinase/uso terapêutico , Claudinas/genética , Claudinas/metabolismo , Claudinas/uso terapêutico
16.
Biochim Biophys Acta Rev Cancer ; 1878(6): 189019, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37951482

RESUMO

Endometrial carcinoma (EC) defines a heterogeneous group of neoplastic diseases originating from the transformation of endometrial cells that constitute the internal lining of the uterus. To date several molecular targets have been analysed to describe the natural course of the disease, claudins being among these. Claudins are the main components of tight junctions (TJs), and their main functions are ascribed to the compartmentalization of tissues and cell-cell communication by means of intracellular ions diffusion: these features are typical of epithelial cells. Their overexpression, mis-localization or loss contribute to the malignancy of EC cells. This review collected all available data regarding the expression, regulation and claudin-related signaling pathways to provide a comprehensive view on the influence of claudin in EC progression. Further, the translational potential of claudin differential expression was explored, indicating that their role in personalized medicine could also contribute to EC therapy besides their employment for diagnosis and prognosis.


Assuntos
Claudinas , Neoplasias do Endométrio , Feminino , Humanos , Claudinas/genética , Claudinas/metabolismo , Neoplasias do Endométrio/genética , Neoplasias do Endométrio/metabolismo , Neoplasias do Endométrio/patologia , Células Epiteliais/metabolismo , Junções Íntimas/metabolismo , Junções Íntimas/patologia , Transdução de Sinais
17.
Sci Rep ; 13(1): 20047, 2023 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-37973935

RESUMO

Claudin 18.2 has emerged as a promising therapeutic target in gastric cancer based on phase 3 studies. However, clinicopathologic features associated with claudin 18.2 overexpression have not been comprehensively studied specifically for patients with resectable gastric cancer. This retrospective study included 299 patients with stage I-III resectable gastric cancer who underwent curative surgical resection. Possible associations between claudin 18.2 overexpression (moderate-to-strong expression in ≥ 75% by the 43-14A clone) and clinicopathologic features and survival outcomes were analyzed. There were 90 (30.1%), 96 (32.1%), and 113 (37.8%) patients with stage I, II, and III disease, respectively. Claudin 18.2 overexpression was noted in 139 out of 299 patients (46.5%). Claudin 18.2 overexpression was associated with a younger age, a lower invasion depth limited to the mucosa/submucosa, and less frequent lymphovascular invasion. Claudin 18.2 overexpression was also associated with Borrmann type 4 among patients with advanced gastric cancer and the diffuse histological type. Claudin 18.2 overexpression was not an independent factor for survival outcomes. In conclusion, claudin 18.2 was overexpressed in almost half of resectable gastric cancer patients. Claudin 18.2 overexpression was associated with some clinicopathological characteristics, but was not an independent prognostic factor in a localized setting.


Assuntos
Neoplasias Gástricas , Humanos , Prognóstico , Neoplasias Gástricas/genética , Neoplasias Gástricas/cirurgia , Neoplasias Gástricas/metabolismo , Estudos Retrospectivos , Claudinas/genética , Estadiamento de Neoplasias , Gastrectomia
18.
Cancer Genomics Proteomics ; 20(6): 539-555, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37889067

RESUMO

BACKGROUND/AIM: Breast cancers constitute heterogeneous tumor groups and their categorization in subtypes based on the expression of the estrogen (ER), progesterone (PR) and HER2 receptors has advanced therapeutics. Claudin-low breast cancer has been proposed as an additional subtype which is mostly ER, PR and HER2 negative, but its identification has not led to corresponding specific treatments yet. MATERIALS AND METHODS: Breast cancer cell lines from the Cancer Cell Line Encyclopedia (CCLE) were assessed for mRNA suppression of claudins and mRNA expression of ER and ERBB2 (the gene encoding HER2). The set of identified claudin-low cell lines were compared with representative ER-/ERBB2- cell lines for associated molecular alterations, gene dependencies through CRISPR and microRNA arrays and in vitro drug sensitivities using the Genomics of Drug Sensitivity in Cancer (GDSC) project. RESULTS: Claudin-low cell lines display up-regulation of mRNA expression of epithelial to mesenchymal transition (EMT) regulators. Methylation sensitive genes are down-regulated in claudin-low lines compared with other cell lines, without associated up-regulation of DNA methyltransferases. Dependency screen microarrays reveal dependencies of claudin-low cell lines on components of the cytoskeleton but no consistent dependencies in known oncogenes or tumor suppressors. Potential drug sensitivities revealed in the drug screens included sensitivities to WNT pathway modulators, tyrosine kinase cascade inhibitors and BET inhibitors. On the other hand, claudin-low cell lines showed resistance to deacetylase inhibitors. CONCLUSION: Claudin-low cell line models duplicate features of claudin-low breast cancers and may serve as guides for identification of drugs worth exploring for further development.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Transição Epitelial-Mesenquimal/genética , Claudinas/genética , Claudinas/metabolismo , Linhagem Celular Tumoral , RNA Mensageiro/genética
19.
Nat Commun ; 14(1): 6214, 2023 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-37798277

RESUMO

Claudin family tight junction proteins form charge- and size-selective paracellular channels that regulate epithelial barrier function. In the gastrointestinal tract, barrier heterogeneity is attributed to differential claudin expression. Here, we show that claudin-23 (CLDN23) is enriched in luminal intestinal epithelial cells where it strengthens the epithelial barrier. Complementary approaches reveal that CLDN23 regulates paracellular ion and macromolecule permeability by associating with CLDN3 and CLDN4 and regulating their distribution in tight junctions. Computational modeling suggests that CLDN23 forms heteromeric and heterotypic complexes with CLDN3 and CLDN4 that have unique pore architecture and overall net charge. These computational simulation analyses further suggest that pore properties are interaction-dependent, since differently organized complexes with the same claudin stoichiometry form pores with unique architecture. Our findings provide insight into tight junction organization and propose a model whereby different claudins combine to form multiple distinct complexes that modify epithelial barrier function by altering tight junction structure.


Assuntos
Claudinas , Junções Íntimas , Junções Íntimas/metabolismo , Claudinas/genética , Claudinas/química , Simulação por Computador , Células Epiteliais/metabolismo
20.
J Nutr ; 153(12): 3360-3372, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37806357

RESUMO

BACKGROUND: Claudins (CLDNs), major components of tight junctions, control paracellular permeabilities of mineral ions and wastes. The absorption of nutrients including glucose and amino acids (AAs) is regulated by intestinal epithelial cells. However, the role of CLDNs is not fully understood. OBJECTIVES: The purpose of this study was to clarify the effect of AA deprivation on the expression of AA transporters and CLDNs, as well as the role of CLDNs in the regulation of paracellular AA fluxes. METHODS: The messenger RNA and protein expression of various CLDNs were examined by real-time quantitative polymerase chain reaction and Western blot analyses, respectively. The AA selectivity of CLDNs was estimated using liquid chromatography-tandem mass spectrometry (LC-MS) analysis. RESULTS: The expression levels of some AA transporters, CLDN4, and CLDN15 were increased by AA deprivation in normal mouse colon-derived MCE301 cells. The expression of AA transporters and CLDN15 in the mouse colon was positively correlated with aging but the expression of CLDN4 was not. The AA deprivation-induced elevation of CLDN4 expression was inhibited by MHY1485, a mammalian target of rapamycin (mTOR) activator. Furthermore, CLDN4 expression was increased by rapamycin, an mTOR inhibitor. mTOR may be involved in the transcriptional activation of CLDN4. The fluxes of AAs from the basal to apical compartments were decreased and increased by CLDN4 overexpression and silencing, respectively. LC-MS analysis showed that the fluxes of all AAs, especially Lys, His, and Arg, were enhanced by CLDN4 silencing. CONCLUSIONS: CLDN4 is suggested to form a paracellular barrier to AAs, especially alkaline AAs, which is attenuated with aging.


Assuntos
Aminoácidos , Claudinas , Animais , Camundongos , Aminoácidos/metabolismo , Claudina-3/genética , Claudina-3/metabolismo , Claudina-4/genética , Claudina-4/metabolismo , Claudinas/genética , Claudinas/metabolismo , Mamíferos/metabolismo , Junções Íntimas , Serina-Treonina Quinases TOR/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...